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The calculation of the scattering amplitude is reduced to the problem of solving a 
set of classical Hamil ton-Jacobi  equations. This allows one to incorporate 
classical intuition into approximations at a fundamental  level. The result is 
actually an iterative expansion for the scattering amplitude which is expected to 
be convergent in the high-energy limit. The first term in the expansion is shown 
to be the Glauber  approximation, which is an approximation used extensively in 
nuclear as well as atomic and particle physics. 

1. INTRODUCTION 

The exact solution to SchrOdinger's equation and, hence, to the scatter- 
ing amplitude for an arbitrary potential has not been found. One, therefore, 
inevitably has to resort to some type of an approximation scheme for most 
scattering problems. Without doubt, approximations can be more easily 
made and understood in terms of classical mechanical arguments. In this 
work the calculation of the scattering amplitude is reduced to an iterative 
expansion which requires only that a set of classical Hamilton-Jacobi  
equations be solved. This can allow one to incorporate classical approxima- 
tions in a very fundamental way into the solution of the quantum scattering 
amplitude. 

The outline of this work is as follows. In the next section it will be 
shown how the calculation of the scattering amplitude is related to 
Schr~3dinger's equation. In Section 3, the Hamilton-Jacobi  iterative solution 
will be formulated. It is shown that this is an expansion in terms of Planck's 
constant and is expected to be most useful for high-energy scattering. 
Finally, in Section 4, it is shown that the first term in this expansion can 
easily lead to the well-known Glauber form of the eikonal approximation 
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(Glauber, 1959). Successive terms, therefore, can be viewed as corrections to 
the Glauber approximation. 

2. THE SCATTERING AMPLITUDE AND SCHRODINGER'S 
EQUATION 

Consider the scattering of a single, structureless particle from a local 
potential V. The Hamiltonian for the system is 

H=Ho+V (t) 

Where H o is the free particle Hamiltonian. If the incident particle has 
momentum Po (energy E0), and the scattered particle has momentum p 
(energy E), the relevant S-matrix element is (Taylor, 1972) 

(plSlPo) = e./h~E,e(-,/t,~E.,,., f d x d x o  
]2~ihl 2 

x e~-i/h~P."(xle~-i/n~H~,-,o~[xo)e~'/h~P.. .... ( 2 )  

In this equation and throughout this paper, the limits t ~ 0o and t o -,  - 
are always to be understood as they refer to the final and initial times of the 
scattering event, respectively. 

The matrix element on the right-hand-side of equation (2) is precisely 
the kernel for Schr6dinger's equation (Merzbacher, 1961). That is, 

g(x, t;Xo, to) = (x I e~-'/h~'"-'"~l Xo) (3) 

is the kernel, and it can be used to determine the wave function of the 
system at time t given the wave function at time t o via the relation 

+(x, ,) = fax0K(x, t;Xo, to) (Xo, to) (4) 

The wave function +(x, t), of course, must satisfy Schr6dinger's differential 
equation: 

- h 2 v2 ) a+(x, t) 
+V +(x, t )=ih Ot (5) 

By requiring that the wave function of equation (4) satisfy Schr6dinger's 
equation, it is easily shown ]since q,(x o, to) is arbitrary] that the kernel itself 
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satisfies Schr6dinger's equation in the variables x and t: 

h2 ) 
--~--~-m x72 +V K(x,t 'Xo,to)=ih 

OK(x.t;Xo,to) 
~t 

(6) 

Hence, the calculation of the S-matrix element is reduced to solving 
Schr0dinger's equation for the kernel. 

The scattering amplitude is related to the S-matrix as follows (Taylor, 
1972). The scattering process is looked at from the wave packet point of 
view with 10) representing the " in" asymptotic wave packet. Its momentum 
representation ( p ' [ 0 ) =  0po(P') is assumed to be well peaked about a given 
initial momentum P0- That is, 0p.(p') is negligible except where p' -~ Po. Also 
needed is the state [0p) which represents the in asymptotic state which has 
been rigidly displaced by an amount p in coordinate space. The plane of the 
vectors p is perpendicular to Po. (P 'I%) is then given by 

(P'I%) : e-~PP/n(P'I0) = e-iP'P/hOpo(p') (7) 

The probability ~o(df~,--10p)) that the particle represented by the in- 
coming state [0p) scatters into the solid angle df~ about the final momentum 
direction b is given in terms of the out asymptotic state (Pl q%ut) = q'o~t(P) by 

fO ~ r (d~2 ,--- I q,f,)) = d~2 p2dp]q~oo,(p)[2 (8) 

The S operator, by definition, relates ]q~out) to [~bi. ) = 1%) via the relation 

(pl ~bout) = fdp'(pIS - 11 p')(p'l 0p) 

or using equation (7) 

q~ou,(p) -- f dp'(p[ S - 11 p')e-iP"P/hOpo(p' ) 

The cross section for the scattering process is given by 

o ( d ~ . - I o ) )  = f d " p  . , ( d ~ - I 0 ~ ) )  

-- f p dp d2p ]~kou,(p) ] 2 

(9) 

(lO) 

(11) 
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Using equation (10), this becomes 

o = df~fp 2 dp d2p dp'dp" 

-p , i t  J X(p[S-1lp")*~plS- l lp ' )e  'r qbp,,(p )~bp,,(p) (12) 

Given the S-matrix elements, one can carry out the above integration to 
obtain the cross section. The dependence upon the wave packets would 
eventually drop out of the expression after utilizing the normalization 
integral 

fdp'q,p, .(p')%.(p') = 1 (13) 

The scattering amplitude f(P, P0) can be extracted by inspection from the 
expression for the cross section via the definition 

o ~ d~2l f(p, po )l 2 (14) 

This then relates the scattering amplitude to the S matrix and, hence, to 
SchrOdinger's equation. 

3. THE ITERATIVE METHOD--FORMULATION 

In the last section, the calculation of the scattering amplitude was 
reduced to the problem of solving Schr/Sdinger's equation for the kernel. 
The further reduction of this to a solution of only the classical Hamilton- 
Jacobi equation has its inspirational basis in the Feynman's path integral 
formulation of quantum mechanics (Feynman and Hibbs, 1965). In this 
formulation, the wave function of a system at time t can be obtained from 
that at time t o via the relation 

[ i ~  ] . , a x o d x ,  dXN_ , 
4 , ( x , t ) - - l i m f e x p  ~- S(x ,+ , ,x , )  4,(x0,~ ) A A " A 

(15) 

Here, x i is the position of the system at time t,; x,+~ is the position at time 
ti+ I = t i q - e ; X N = X ;  A is a normalization constant; and S(x~+l,x~) is the 
classical action calculated from the time integral of the Lagrangian over the 
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classical path from x, to Xi+l: 

S ( x , + , , x , ) : f " + ' L ( x ( t ) , x ( t ) ) d t  
t~ 

(16) 

One can assume, in equation (19), that the integrals over x ~, x z . . . . .  x N- I 
have been done and the limit e--, 0 taken. The result can, in general, be 
written in the form 

q J ( x , t ) = f e x p [ ( ~ ~ i t ~ ' t ~  ~b(Xo, to) dx o (x7) 

S(x, t;x 0, to) is the classical action for the entire path from x 0 to x, and it 
satisfies the Hamilton-Jacobi equation (Lanczos, 1966) 

( v s )  = - o s  (18) 
2m + V -  3t 

With V being the potential energy function of the problem. 
Comparing equation (17) with equation (4), it is seen that the kernel is 

given by 

K(x, t ;x  o, to) = exp[( i /h)S(x ,  t;Xo, t o)] 
O(x, t ;x  o, to) 

(19) 

Requiring that this must satisfy Schfi3dinger's equation, one obtains the 
relation 

( v s )  2 
h 2 i v z S + h B V B - , . v S )  2 ~  + V-~'--~m ( BV2B- '  + ~ 

- 3S 3B-1 
- 3t +ihB 3-~ (20) 

In view of equation (18), the equation which determines the function B 
is given by 

_ h  2 
- - B ~ 7 2 B  -t 

2m 
- i h  BVB_~.VS + S =ihB Ot (21) 
rn 

Hence, the calculation of the kernel and, therefore, the scattering 
amplitude has been reduced to solving the Hamilton-Jacobi equation of 
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equation (18) for the action S and solving equation (21) for the function B. 
If the following definitions are made 

and 

B, ~ B (22) 

S o ~ S (23) 

i___hh ! 
v, = [ ~,v~;- '-  vso - -  Ol  \ 

+ V~ S~ ) (24) 

then equation (15) becomes 

_ 2 3 B ? ~  (25) ( @ v 2 + V , ) 8 7  ' = ; h  ~, 

Which is the Schr6dinger equation for the function B~. Hence, the calcula- 
tion of the kernel which satisfies SchrOdinger's equation has been written 
formally as the combination of the solution to the Hamilton-Jacobi equa- 
tion and that of the SchrOdinger equation again. 

The latter equation [equation (25)] can, in turn, be written formally as 
the same combination of solutions. That is, 

B71 = eU/h~S'/B 2 (26) 

Where S z satisfies the Hamilton-Jacobi equation: 

(vSt)2 - OS~ 
2n-----~- + V , -  3---7-- (27) 

and B 2 satisfies the Schr0dinger equation 

- h 2 ) 3B~- I 
2-m---m v2+V2  B 2 ' = i h  3 ~  (28) 

With the definition 

v2SI )  (29) V2 = -rni----hh B 2 v B ~ t " v S I + 

Repeating the same procedure with B?, one obtains 

B2 1 = e~ (30) 
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and equation (20) can thus be written as 

B-I  = B71 = e,/hlr + s.o/B 3 (31) 

Substituting this expression for B in equation (19), the kernel is given by 

K = e (i/h)(S~ +sz)//B 3 (32) 

Of course, this type of procedure can be carried out to any order to 
obtain 

K =  e x p [ ( i / h ) ( S ~  + Sl + " "  + S N - ' ) ]  

BN 
(33) 

Where each S k satisfies the Hamilton-Jacobi  equation: 

( v S  k )2 - OSk (34) 
2------m --  + Vk - O ~  

with 

V 2Sk_ ~ ) 
Vk = -mi----hh BkVB~t" VSk_ I + - - 2  (35) 

B N satisfies the Schr0dinger equation 

-- h2 V 2 ) 0B'vl (36) 
+VN BN~=ih  Ot 

Each B k can be written in terms of B u (k  < N )  as 

B~ t = e x p [ ( i / h ) ( S k  + Sk+, + - . .  + SN_ ,)] 
BN 

(37) 

At this point, it may seem that the problem is more complicated than it 
was originally in that the calculation of the kernel has been changed from 
the solution of one Schr0dinger equation to the solution of N Hamil ton-  
Jacobi equations in addition to one Schr~dinger equation (N = 1,2, 3 . . . .  ). 
An analysis of equations (34) and (35), however, shows that each successive 
V k is proportional to a higher power of h (although the power may not be 
integral). This means that in terms of an h expansion, each successive V k 
becomes smaller and smaller so that for some N, it is accurate to take 
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V N = 0. Then equation (36) become Schr0dinger's equation for a free 
particle 

- h 2 OBN I 
2--m - v 2 B N ' = i h  ~t (38) 

The appropriate solution to this is easily shown to be 

B N I = e( i / h )a,,free/ Bfrer (39) 

Where So rr~ is the classical action for a free particle 

Sc[ roe - -  m(x--x~  (40) 
2 ( t - - t 0 )  

and 

Bf~r = [ 2 r 1 7 6  ] 3 / 2 m  (41) 

In fact, BN ~ is just the kernel for a free particle 

B~'  = Krrer (42) 

so that equation (33) can be written as 

K = K r r e e e x p [ ( i / h ) ( S o + S ,  + ' "  + SN_,) ] (43) 

Substituting equation (39) into equations (35) and (37), the "potentials" 
can be written as 

v ~  = m 
i ( ,  

- ihKfrdeVKrree 'VSk- '+-h  ( V  m - k + V S k + l +  + VSN-t)  

V 2S k_ i 
X v S  k_ t § ~ (44) 

Using these potentials in the Hamilton-Jacobi equation to obtain the 
various Sk'S reduces the calculation of the kernel, finally, to the solution of a 
set of Hamilton-Jacobi equations. An iterative procedure is required, 
however, because to get V k one needs S k according to equation (44). But S k 
is calculated using V k. 

Before justifying the iterative procedure to be followed, it is useful to 
examine the boundary conditions imposed upon the Sk'S in the solutions to 
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equation (34). In view of equation (43), the sum S o + S 1 + �9 �9 �9 + S N_ ] must 
vanish in the limit of a free particle. Since N is arbitrary, it is evident that 
this means that each S k must vanish in this limit: 

S k --* 0 (free particle; V k --, O) (45) 

where k = 0 , 1 , 2  . . . . .  Other boundary conditions on the Sk'S are to be 
determined from the boundary conditions on the kernel itself (Rosen, 1969). 
These conditions are: (I)  the composition law 

K ( x , t ; X o , t o ) =  f K ( x , t ; x ' , t ' ) K ( x ' , t ' ; X o , t o ) d x '  (46) 

for all t o ~< t ' ~  < t; and (2) the initial-value condition 

lim K(x,  t; x 0 , t o ) = 6 3 ( x -  x o ) (47) 

Hence, assuming that the energy of the incident particle is large 
compared to the scattering potential so that the particle is almost free one 
can assume to first order that SI t~= Sz (~1 . . . . .  0 (which is equivalent to 
taking N = 1). This gives a first-order kernel as 

K ~1~ = Kf~r162 ti/h~s~'' (48) 

So ~) can be calculated because the physical scattering potential is used for its 
calculation. The reason for an iteration index on S O will become apparent in 
the following discussion. 

The second-order approximation is obtained by taking S~ 2~= 
S{3 z~ . . . . .  0 (i.e., N = 2) and calculating V t using the first-order Sk's: 

- -  i h  V Zs o 
V ( 2 )  = K f r e l e V K f r e e  - v S  0 + ~ (49) 

rn 

This allows one to calculate SI 2) by solving the Hamil ton-Jacobi  equation 
and to write K as 

K(2~ = Kfreee(i/h)(S~)2~+St2~ (5o) 

This procedure can then be continued indefinitely to obtain 

(51) K {'') = Kfreeexp[(/ /h )(S(o n) + SI n) + S{2 ") + . . .  T ~)N--t]J 
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The above is an h expansion in that it corresponds to taking succes- 
sively larger values for N ,  but it is also based on the assumption that the 
magnitude of the potential is much smaller than the energy of the incident 
particle. Hence, there are actually two expansion parameters that one must 
keep up with. These parameters can be taken to be the same as taken by 
Wallace 1973) in his eikonal expansion: 

and 

e = - -  V o / 2 E  (52) 

A ---- h / p a  (53) 

Here V 0 ~s a measure of the magnitude of the strength of the potential, p is 
the magnitude of the particle momentum, and a is a measure of the distance 
over which the potential changes appreciably. 

As discussed by Wallace, it is inconsistent to expand in only one of 
these parameters while ignoring the other. Hence, one must expand in both 
parameters together. For instance, terms like e 2, A 2, and eA should be kept 
in the same iteration step. It can now be understood why even So needs an 
iteration index although it is not proportional to any power of h. This is 
because it does contain terms with different orders of the parameter e. 

4. THE GLAUBER APPROXIMATION 

The first-order solution to the kernel is given by 

K ~l~ = Krreee ~i/h)s~'' (54) 

Where S o satisfies the Hamilton-Jacobi equation 

(VSo) 2 -0s0 
2n~-~--- + V=-  0~-7--- (55) 

In the usual manner for time independent potentials, the time dependence 
of So can be assumed to be of the form 

So(x,  ,; Xo, to ) = & ( x ,  Xo) - e ( t  - to) (56)  

so that 

(Vgo) 2 
2m + V=  E (57) 

with E being the energy of the incident particle. 
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The solution to equation (57) normalized by equation (45) is known to 
be (Lanczos, 1966) 

(58) 

Here the integral is done once the z direction from - ~ to + oo because the 
Glauber approximation makes the assumption that the particle travels along 
a straight path; the direction on the path is defined to be the z direction and 
is the direction of the average momentum. The end points -+ 0o correspond 
to the physical fact that the incident and scattered particles must be an 
infinite (out of range) distance from the potential center. This is also easily 
shown to be identical to the limits t o --* - ~ and t ~ or. 

~) can be expanded to give 

j = l  

Where 

(59) 

~o9)=_(2mE)l /2(2j - -3) ! !  f~_ ~ ( V } j j!! ~ ~ dz (60) 

It can be seen from this that ~(J) is proportional to e j. Hence, the first-order 
solution to the kernel is 

Where 

K (1) = Kfrcce(-i/h)E(t-to)e(i/h)s-~ I~ 

-(2mE)'/2 f V dz 
- -  O G  

(61) 

(62) 

If the "impact  parameter" b is defined such that 

x = b + z 2  

then it is seen that 

(63) 

,-~J) = ~J)(b)  (64) 

Substituting equation (61) into the expression for the S-matrix element, 
it is shown in the Appendix that the scattering amplitude is given by 

f ( p , p 0 ) =  Po (dZb dqb(ei• (65) 
21rih J 
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where 

and 

Williams 

x ( b ) -  ~ ' ) -  ~1 m h (Y-E)'/2f~_~ V(b'z)clz (66) 

q = ( p o - p ) / h  (67) 

This equation is identical to the Glauber approximation. 

5. CONCLUSION 

The calculation of the S-matrix element has been reduced to the 
solution of a set of classical Hamilton-Jacobi equations. The procedure 
outlined is expected to be convergent in the high-energy limit where eikonal 
approximations are useful. One advantage of such a formalism is that 
approximations based upon intuition gained from classical physics can be 
easily incorporated into the quantum theory. 

In this regards, it was shown that the widely used Glauber approxima- 
tion corresponds to the first term in the expansion. Its approximation of a 
straight-line trajectory was easily put into the formalism by calculating the 
classical action (the solution to the Hamilton-Jacobi equation) for such a 
path. Corrections to the Glauber approximation, therefore, can be obtained 
by retaining additional terms in the expansion. Such a procedure has been 
carried out and proved to be very promising. This will be the subject of a 
subsequent paper. 

A P P E N D I X  

From equations (2) and (3) the relationship between the S matrix and 
the kernel is 

(plS[  po) = e"/h~E'er176176 f d x  dXo .e (_ i /h )p .xK(x  ' t; x o 

The kernel for the Glauber approximation is 

K ~- Kfreee(-i/h)E(t-t~ ix(b" E) 

, to) e ( i / h ) p ~ 1 7 6  

(A.1 

(A.2 



Hamilton-Jacobi Expansion 231 

where 

and 

x(b, E) : - ~  ( ~ E )  

irn(X--Xo) 2 
Krr~ = exp 2h(t_to ) 

'/2 f +_2 W(b, z ) az (A.3) 

/ [  2~rih( t -  t~ ] 
(A .4) 

Setting E = E  o in equation (A.1) and substituting for K, the S matrix 
becomes 

_ f d x d x  o ~-i/h~p-x~c o,• 

In terms of the matrix element of S -  1 this becomes 

dx e,q.XT(b ' E) (A.6) (plS- llpo) =f 12~/ihl2 

Where 

T(b, E) = e~-'/h)poXfdxo e(i/h)P"X~ TM -- 1 (A.7) 

and q is the momentum transfer given by 

q = ( P o - p ) / h  (A.8) 

Using equation (A.4) for Krrec, it is a straightforward calculation to show 
that 

T(h, E ) : e iX(b" E) _ l (A.9) 

Substituting equation (A.6) into equation (12) of Section 2, the cross 
section becomes 

da f p2ap d2p dp' dp" dx dx" 
127rihl 4 ei(p'-p) .x/he-i(p"-p).x"/h O 

• e ir ' ~ ~po(p") T (E, b)T*(E, b) (A. 10) 
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The integral over p can be done to yield a two-dimensional delta function in 
momentum space corresponding to the momentum components in the plane 
perpendicular to P0: 

Where 

and 

fd2p ei(p"-p')o/J' = [2~ih1262(p'+ - - p '  ) (A.11) 

P " =  P+ + P'- Po (A.13) 

define p+, p+, p ' ,  and p". This delta function can then be used to do the 
integral over dZp+ to obtain 

da f p2dp dp' dp"_ dx dx 
]~ihl  ~ exp[i(p'-p).x/h] exp[i(p'+ + p'_' r i o - p ) . x " ]  O 

• ~p.(p')ep~*(p+ + p"_ Po)r(E,b)r*(E,b) (A.14) 

The integrals over z and z" can also be done obtaining two delta 
functions: 

daf p'- dp dp'dp" d2b d2b '' 
12~.ihl2 6 ( (p ' -p ) -2 )8( (p :~  + p"/~o - P ) s  O" 

X exp [ i (p ' - - p ) . b /h ]  e x p [ - i ( p +  + p"_ rio - P ) . b " / h ]  

• 0p,,(P')0p*,(P+ + P" fio)T(E,b)T*(E,b '') (A.15) 

Using the fact that 8 ( a x ) =  8(x)/ la [, one can write 

~((p'+ + p'-' Po - p ) ~ )  -- (po / lg l )8 (p"  - ( p - p +  )~po/g) (A.16) 

where 

g =- P0" z (A. 17) 

P '=  P'+ + P'- Po (A.12) 
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This delta function can be used to do the integral over p'_' to obtain 

o--d~ f p2dpd2bd2b"dP' 1~ 8((p'-p).s 
]2~ih] 2 

•  - i [p '+  + (p--p'+) �9 Z"po/g - p ]  .b"/h) 

• %,,(p')~,[p+ + ( p - p +  ).2fio/g]T(E,b)T*(E,b" ) (A.18) 

The delta function appearing in this equation causes 

p+ + ( p - p + ) . 2 p o / P o . 2  = p+ + p'_/:3,) = p (A.19) 

so that the p' integration is of the form 

f d p ' 6 ( ( p '  - p ) . 2 ) I  q~p,,(p')[ 2exp [ i ( p ' - p )  - ( b -  b" ) /h ]  

= exp [ i(p o -- p). ( b -  b " ) / h i  fdp'8 ( ( p ' -  p). 2 )1 '/'p,,(P') 12 

• exp [/(p'-- Po )" ( b -  b " ) /h ]  (A.20) 

In the plane wave limit of Iq~[ 2 -  83(p'-p0), the integral above reduces to 
8 ( ( p o  - p). 2)exp[i(Po - P)" ( b -  b " ) / h  ]. Substituting this result into equation 
(A.18), one obtains for the cross section 

,,:d~ f p2dpdZbd2b" i-~9T6((po-p)-2) 
I2~-ih] 2 

• exp[i(p o -p).(b-b")/h]T(E,b)T*(E,b") (A.21) 

The 2 direction for the Glauber approximation is the direction of the 
average momentum: 

P+Po _ P+Po (A.22) 
2 - I p + p o [  2pocosO/2 

Where 0 is the scattering angle. Hence, 

(Po -- P)" 2 -- 
m Po - p2 

Po cos 0/2 2 m 

m 

Po cos 0 /2  ( Eo - E ) (A.23) 
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But 

This gives 

(Po + P) 
g = Pc)" ~ = Po' 2poCOS 0 /2  - P~176 0 /2  

m(  
(Po--P) "g=g Eo--E) 

Williams 

(A.24) 

(A.25) 

and 

6( (po-p ) .~ )=6(  g ( E o - E ) ) : J g ! 6 ( E o - E )  (1.26) 

The cross section becomes 

o = da f p~ 6( E~ ~- E ) 
12~ih[ ~ m exp[ i (p~  

(A.27) 

Using dp = ( m / p ) d E  and the delta function to do the integral, equation 
(A.27) becomes 

9 

d~ Po f eiq.bT( E,b) - o= ~ d2b 

Upon comparing this with the equation 

cr= df~lf(p, po)[ 2 

it is seen that the scattering amplitude is given by 

Po f d2beiq.bT( E,b) 
f(P,Po) = 2rrih J 

_ Po J (d2bei,~.b(ei• I) 2 ~rih 
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